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Abstract- A method for obtaining linear state space mod- 
els of the drawing process is developed. Traditionally, com- 
putational fluid dynamics methods have been used to  model 
the drawing process. Although these models have the po- 
tential to provide very accurate details of the flow field, they 
incorporate thousands of dynamic states which make them 
unsuitable for both real-time simulations and control de- 
sign. Experimental data  have also been used to construct 
frequency response models which are suitable for control de- 
sign. However, they heavily rely on the particular operating 
conditions for which they were obtained. Furthermore, they 
are constructed using large lumping techniques based on the  
information at the boundary and cannot predict large per- 
turbations in the flow field. The objective of this paper 
is to bridge the gap between the system theoretic model- 
ing techniques of t he  control engineer and the more phys- 
ically motivated modeling methods of computational fluid 
dynamics. The method presented here consists of using-the 
basic conservation laws (mass, momentum, and energy) to 
describe the mean flow of glass along the axial direction. 
Then, a linear state space model is obtained by spatially 
discretizing and linearizing the nonlinear partial differential 
equations. The resulting state space model incorporates all 
the relevant inputs and outputs of the system in a multiple- 
input/multiple-output framework. Furthermore, it lends it- 
self to the application of modern control design techniques. 
The method is simple to  implement since all that  is needed 
is the steady state operating points, which can be computed 
from computational fluid dynamics simulations. 

Keywords- Optical Fiber Drawing, State Space Modeling, 
Computational Fluid Dynamics. 

I. INTRODUCT~ON 

VER the years, optical fiber technology has come to 0 be recognized as an efficient way to transmit signals 
in high quality telecommunication systems. The fibers in 
high quality systems must have uniform diameters, high 
tensile strength, and yet be economically produced. The 
latter usually means that fibers must be drawn at high 
speeds to  reduce manufacturing costs. Fiber diameter uni- 
formity affects joint and splice loss, optical transmission 
characteristics, as well as the refractive index profile. Fiber 
production with high-tensile strength over the entire fiber 
length is an important factor for fabrication, installation, 
and maintenance of fiber cable. 

The term draw process refers to  the formation of an o p  
tical fiber from a cylindrical glass rod called preform. As 
shown in Fig. 1 a preform of initial radius, Rp. is gradually 
fed at a rate, u p ,  into a cylindrical furnace and peripherally 
heated to  its softening temperature. At that temperature 
the preform becomes soft and a tension force is applied 
at its lower tip to  pull the glass downward resulting in a 
necking shape on the preform. As the glass is drawn down- 
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Fig. 1.  Longitudinal Section of a Typical Draw Process Configuration 

ward at a relatively high speed. wf. a glass fiber is formed 
at some location downstream. As the fiber exits the fur- 
nace, it enters the cooling stage where it is cooled by the 
surrounding gas. The fiber is then coated with an organic 
material to  protect its surface from moisture and direct 
mechanical abrasion. Finally. the coated fiber is wound on 
spools through a precision winding mechanism. 

During the drawing process, the fiber diameter may ex- 
hibit significant fluctuations. Such fluctuations result from 
several factors such as longitudinal variation of the preform 
diameter. preform feeding rate, unsteady variations of the 
fiber draw speed, and/or mechanical vibration of the draw- 
ing machine. Variations of the furnace temperature will 
also lead to  perturbations of the glass temperature distri- 
bution. Since the glass thermophysical properties, such as 
viscosity and thermal conductivity. are strong functions of 
temperature. these perturbations will ultimately lead to 
fiber diameter nonuniformities. 

The need to improve the quality of optical fibers and the 
yield of the drawing process has motivated numerous in- 
vestigators to model the fiber drawing process in an effort 
t o  devise better diameter controllers. Toward this goal, 
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several researchers (see for example [l]) have attempted 
to develop accurate models from Computational Fluid 
Dynamics (CFD) to  obtain the free surface shape. ve- 
locities, and temperature profiles within the glass during 
the drawing process. These models incorporate thousands 
of dynamic states and have the potential to provide very 
accurate two-dimensional models of the flow field. Unfortu- 
nately, the large number of states, and the nonlinearity of 
the equations necessitate large amounts of computational 
time. Hence, these CFD models are unsuitable for both 
real-time simulations and control design. Computationally 
more efficient models than the C F D  models have been de- 
veloped based on one-dimensional isothermal approxima- 
tions of the full two-dimensional models [2], [3], [4]. How- 
ever. since they are isothermal models. they cannot predict 
fiber diameter perturbations due to temperature fluctua- 
tions in the draw process. 

Some investigators [5], [SI, [7], [S] have also developed fre- 
quency response models for t he fiber drawing process based 
on experimental data. Although these frequency response 
models are suitable for control design, they heavily rely 
on the particular operating conditions for which they were 
obtained. Furthermore. they are constructed using large 
lumping techniques based on the information at the bound- 
ary and cannot predict large perturbations in the flow field. 
As a result they only characterize the input/output rela- 
tionship of the system and do not reveal any information 
about internal states like CFD models do. 

The objective of this paper is to bridge the gap between 
the system theoretic modeling techniques of the control en- 
gineer and the more physically motivated modeling meth- 
ods of computational fluid dynamics. To achieve this ob- 
jective, quasz - one - dimensaonal equations describing the 
mean flow of glass along the axial direction are developed 
from the basic conservation laws (mass, momentum, and 
energy.) These nonlinear partial differential equations are 
then discretized and linearized about a steady state oper- 
ating point to create a finite-dimensional linear state space 
model, which can be used for control system design. 

The model presented here is also different from previous 
models in that, most control models currently in use are 
single - input/single - output ( S I S O )  in which the draw 
speed is the only control input to the system. Controlling 
the fiber diameter using these SISO models puts a burden 
on the draw speed, which in turn results in large variations 
in draw speeds that adversely affect subsequent process 
operations such as the application of the coating mate- 
rial. Furthermore. experimental and empirical evidence 
suggests that the furnace temperature is one of the most 
influential factors affecting the fiber tension force. There- 
fore, the dynamics of the draw process must be modeled 
in a multiple - input/multiple - output ( M I M O )  frame- 
work. In other words. an accurate control model of the 
draw process must include the furnace temperature. pre- 
form feed rate. and fiber draw speed as control inputs: and 
fiber diameter, tension force. and fiber temperature as con- 
trol outputs. The fiber temperature is monitored because 
it affects the application of the coating material. 

11. DYNAMIC EQUATIONS 
The dynamic equations presented in this section are 

based on the one-dimensional conservation of mass, 
momentum. and energy. They are referred to as the quasi- 
one-dimensional equations and used to approximate the full 
two dimensional equations. In the quasi-one-dimensional 
approximation the flow is predominantly in the axial di- 
rection. Although there is some motion in the radial di- 
rection. the radial momentum equation is negligible. The 
approximation is reasonable at  steady state especially in 
the draw - down region where most of the fiber formation 
occurs. 

To apply the conservation laws to develop the dy- 
namic equations, one must identify an appropriate control 
volume. a region of space bounded by a control surface 
through which energy and matter may pass. In cylindrical 
coordinates, a suitable control volume is an infinitesimal 
cylinder of radius R, cross sectional area a = irR2, and 
length Az as shown in Fig. 1. The axial velocity and axial 
temperature at  the center of the control volume are v and 
T .  respectively. Stated in the context of the differential 
control volume shown in Fig. 1, the conservation of mass, 
momentum, and energy describing the mean flow of glass 
along the axial direction are given by 

da d - + - (a.) = 0, a t  a z  

pcp [ ( U T )  + L (avT)]  = 2 bag) 

where t is time and z is the axial distance; p, p ,  K ,  y, 
and g are the density, dynamic viscosity; surface curvature, 
surface tension coefficient, and gravitational acceleration, 
respectively; and cp and IC are the specific heat and thermal 
conductivity, respectively. The convective and radiative 
heat fluxes at  the glass surface are given by 

where h is the heat transfer coefficient at  the surface, T, is 
the surrounding gas temperature, E is the glass "effective" 
emissivity, a = 5.67051 x lo-' W,m-2 K-4 is the Stefan - 
Boltzmann constant. and q(t)qfu,.(z) represents the heat 
flux leaving the furnace that is incident on the glass,surface. 
The spatial distribution of the furnace heat flux, qfur ( z ) :  is 
obtained from (11 and its intensity is given by the following 
differential equation: 
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where Iq is the input current to  the furnace. and r q  and 
Kq are the furnace time constant and gain. respectively. 

To simplify the presentation and utilization of the solu- 
tions. the conservation equations are rewritten in dimen- 
sionless form. They are also transformed to  a generalized 
curvilinear coordinate. 5 = ((2). and cast into the vector 
form. The nondimensionalizing procedure may be done by 
normalizing the relevant variables with appropriate scales 
and arranging them into suitable dzmensionless groups. 
Thus by identifying the following scales: 

a N R:, v N v f ,  z N R p ,  t N R p / v f ,  rc - l /Rp ,  

T N Tm, P N P m ,  N km, cp N cp,mt Y N Y m ,  

where the subscript "m" denotes value at the melting 
point, the conservation equations are rewritten as 

111. BOUNDARY CONDITIONS 

At the inflow. the preform diameter is constant and the 
axial velocity is equal to  the preform feed rate, vp( t ) ,  which 
is obtained from a motor described by 

where Vp is the input voltage to the motor. and r p  and 
K p  are the motor time constant and gain, respectively. At 
the inflow the conductive heat flux is assumed constant 
(d2T/dz2  = 0.) As a result. the inflow temperature is 
extrapolated from the interior domain of the glass. 

The outflow cross sectional area is obtained from the 
continuity equation given by Eq. (1). Thus, 

E ( J $ + g )  = 6 ( r z )  +S, (7) 

where Q: F ,  and S, are the state vector, convective f lux  

The outflow velocity is equal to  the fiber draw speed. v f ( t ) ,  
obtained from a motor described by 

vector. and s w r c e  vector, respectively. given by T f i f  ( t > + " f ( t )  = K f V f ( t ) ,  (11) 

T 

avT I T ,  
where Vf is the input voltage to  the motor, and r f  and K f  
are the motor time constant and gain, respectively. The 
outflow temperature is obtained from the conservation of 
energy requirement. Thus, 

& = [ a  T ]  , 
F = [ av av2 

where where the subscripts "t" and "6" denote differentiations. 

IV. STATE SPACE MODEL 
In Sections I1 and 111, the conservation equations and 

boundary conditions describing the dynamics of the system 
were developed, respectively. In this Section, a state space 
form suitable for the application of modern control design 
techniques is introduced. This is achieved by linearizing 
and spatially discretizing the conservation equations, which 
are rewritten here as 

3P'z s4 = slEc, 
s l = 5  s 2 = - + L  asl t-l 

ReEc-l ' ReCa' at F r '  s3= ___ 

2&h(z) 
pvf(,cp,m * 

, s 7 = -  2J;i 
s 6 =  

s5 = -2J;;aETi 
Pvf E x +,m P V f T m L C p , m  

are given by The matrices E ,  J .  and 

1 0 0  

(13) 
aQ E = d i a g ( l , l , c , ) ,  J = L  5, [  TO^ v a 0 ]  , N a t  = R(Q,q) , 

where t,he residual vector, R, is defined as 3aPE akE, r=diag 0 , L  - =diag 0,r2,r3 . 

The dimensionless groups Re, Pe: Fr,  Ec: and Ca are the 
(14) 

( R e ' P e )  ( ) 

Reynolds, Peclet. Fr&de, Eckert, and Capillary num- and the matrix N = E J .  
bers. respectively, defined by To discretize the conservation equations, a one- 

dimensional grid along the axial coordinate is constructed 
on the solution domain. The grid points are numbered us- 
ing the index i with 1 5 i 5 I .  where I is the maximum 
number of grid points. The inflow boundary is located at 
i = 1 whereas the outflow is at i = I .  The residual vector 
is discretized using a third order upwind f lux  difference 

Re = - pvf Rp , pe = 
Pm 

vf RP , F r = -  S R P  
Ic,/Pcp,m U; ' 

Ec= - , C a =  w. 
+,mTm Y m  
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method [9] for the convective flux vector: and the second 
order central dif ference method [lo] for the dif fusion 
term and source term vector. Thus, 

1 
- -E, 2 [F ( & % + I )  - F (Qt-i)] + Sz. ( 1 4  

where 0 = aF/aQ is the Jacobian matrix of the convective 
flux vector. The discrete residual vector in Eq. (15) can 
be linearized using a truncated Taylor series about some 
steady state vector. Q. and heat flux. q. to  give 

NzSQ, = ~ 6 Q , - 1 +  P,SQt + (pt6Qt+i + W t S q ,  (16) 

where 6Q and 6q are small perturbations about some 
steady state. and the coefficient matrices are given by 

The residual vector at the outflow boundary is 

where the residual components. T I , [  and T ~ , J  are obtained 
from Eqs. (10) and (12) using second order one-sided dif- 
ferences. Upon linearization of the residual vector. RI. the 
following equation at  the outflow boundary is obtained: 

NISQI = 1C116Q1-3 + ~b~6Q1-2 + a16Q1-i 
+ P16Q1 + a r b  + OKfvf ,  (19) 

where 

0 0 
N I  = - 

a R I  
P I  = aQr' aQI-3? +I = d Q I - 2 7  ffI = - 8% aRI m 

~ Q I - 1 '  
$1 = - 

The change in inflow state vector. SQ1. is expressed as 

SQ1= 2W1SQ2 - W16Q3 -t BSvp, (20) 

where Wl = dzag(O,O, 1) .  

state equation can be rewritten as 
Combining Eqs. (6). (9). (16). (19). and (20). the system 

Ill? = A ~ z  + B ~ u ,  (21)  

where the global state vector x and the input vector U are 
defined by 

The matrices M :  Al. and B1 are given by 

AI = blockdiag rp, T,, N2,. . . , N,, . . , N I )  , ( 

, 

where p2 = P2 + 2a2 W1 and p2 = p2 - cy2 W I  . 
Eq. (21)  is the linear state-variable form of the dynamic 

equations. To complete the state space representation of 
the system, an output equation must be developed. The 
outputs of the system are the fiber cross-sectional area 
(from which the fiber diameter can be determined), the 
fiber tension force. and the fiber temperature. In dimen- 
sionless form. the fiber tension force is given by 

Using a second-order backward difference for the velocity 
gradient at the outflow boundary' , Eq. (22)  is discretized 
and linearized as 

where the vectors c1: c2: and c3 are obtained in an obvious 
manner. Denoting the output vector by 

the complete state space representation of the dynamic sys- 
tem is expressed as 

X = A x + B u  

y = C x + D u  (24) 

where the matrices A: B: C :  and D are given by 

A = Ilf-'A1, B = I K ' B i ,  D = 03x3 

01x3 ... 01x3 . ' .  01x3 1 01x2 [ 01x3 ... 01x3 ' . '  01x3 01x2 1 
C =  O l X 3  ... 01x3 C3 C2 c1 ] . 

'It is assiinied that the final fiber diameter is at.taiiied at  the outflow 
boundary and thc tension force is nieasnred there. 

, 
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v. RESULTS AND DISCUSSIONS 

In this Section, some results of the state space model- 
ing method developed in Section IV are presented. The 
number of grid points was I = 50 and all parameters such 
as preform shape. furnace configuration. thermophysical 
properties, and dimensionless groups are all obtained from 
[I] and will not be reproduced here due t o  lack of space. 
The steady state operating points used in the linearization 
procedure were obtained from nonlinear C F D  simulations 
[l]. The CFD simulations provide the steady state vector. 
Q. about which the linearization procedure is performed. 
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Fig. 2. Responses to a Step Change in Feed Rate Input Voltage. 

The unit step responses, with zero initial conditions, are 
shown in Figs. 2, 3, and 4 in dimensionless form according 
to  the prescriptions in Section 11. The fiber diameter. ten- 
sion force, and temperature responses to  a unit step change 
in feed rate input voltage are shown in Fig. 2. These re- 
sponses exhibit relatively long rise times and settling times. 
indicating that the feed rate has a slow effect on the draw 
process. Many investigators [3], [4]. and [5] in the past 
have neglected the effects of the furnace heat input in their 
control models. As shown in Fig. 3, the responses to  a 
step change in the furnace heat input current exhibit fast 
rise times and settling times and some overshoot. There- 
fore, the dynamics resulting from the furnace heat input 
cannot be neglected. It has been shown experimentally [5] 
that the draw speed is the most influential factor affecting 
the fiber diameter. This is verified in the topmost plot in 
Fig. 4: as a unit step change in draw speed input voltage 
produces the most change in fiber diameter compared to  
those in Figs. 2 and 3. We also see in Fig. 4 that as the 
draw speed increases, the fiber diameter decreases. This is 
a direct result of the conservation of mass. That is, high 
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Fig. 3. Responses to a Step Change in Furnace Heat Input Current. 

speeds result in small cross sectional areas. 
The step responses provide useful informbtion about the 

system in the time domain. In addition to  information in 
the time domain, information in the frequency domain is 
also of interest. Fig. 5 shows the singular values plots of 
the system. These plots give us insights on the magnitude 
of the open loop ratios between the outputs and the inputs 
of the system. The frequency response shows high gains 
a t  low frequencies indicating the ability of the system to 
track reference inputs a t  steady state. We also note a high 
roll - off a t  high frequencies, which reveals the ability of 
the system to attenuate high frequency noise. 

To validate the linear model, the fiber diameter response 
of the nonlinear C F D  model developed in [l] is compared 
with the linear state space model. It is seen in Fig. 6 
that the linear model shows reasonable agreement with the 
nonlinear C F D  model. 

VI. CONCLUSIONS 

A method for obtaining linear state space models of the 
draw process was developed. The method provides a lin- 
ear model that can be used for control applications. The 
method consists of using the basic conservation laws (mass, 
momentum, and energy) to derive quasi-one-dimensional 
dynamic equations, which describe the mean flow of glass 
along the axial direction. The dynamic equations are then 
spatially discretized and linearized to  obtain a linear state 
space model. Since the state space model is a linearized 
representation of the nonlinear model, it is valid near one 
operating point. If the operating condition changes. a new 
model must be developed. This is not a problem, because 
the new model is easily computed from new steady state 
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Fig. 4. .Responses to  a Step Change in Draw Speed Input Voltage 

Fig. 5. Singular Values Plots 

data from C F D  simulations. It is instructive to  note that 
the linear model is not guaranteed to  be stable around other 
operating points. This is not a severe limitation in optical 
fiber control system design since the major concern here is 
to regulate the outputs about a particular operating point 
rather than to track reference commands. 

Although the method presented here provides an accu- 
rate an efficient way to obtain state space models suitable 
for modern control design. it can be improved by consid- 
ering the effects of time delays that might arise due to 
physical and/or computational limitations. Furthermore. 
the method provides nominal models which are approxi- 
mations to the actual system. In order to  guarantee that 

200 I; 

140 ' I 
500 1000 1500 2000 2500 

lime (sec) 

Fig. 6. Fiber Dianieter Responses Obtained from Nonlinear CFD 
and Linear State Space Models 

the compensators designed on the basis of plant nominal 
dynamics or nominal models will result in stable feedback 
control system, the control engineer must be equipped with 
models that capture the uncertainty structure of the sys- 
tem. Therefore, the model uncertainty structure should 
also be accounted for. These issues are currently being in- 
vestigated by the authors and will be addressed in future 
papers. 
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